The

Complete
Reference

Exception Handling and
Miscellaneous Classes

926 C++: The Complete Reference

T

his chapter describes the exception handling classes. It also describes the auto_ptr
and pair classes, and gives a brief introduction to the localization library.

| Exce ptions
The Standard C++ library defines two headers that relate to exceptions: <exception> and
<stdexcept>. Exceptions are used to report error conditions. Each header is examined here.

<exception>

The <

exception> header defines classes, types, and functions that relate to exception

handling. The classes defined by <exception> are shown here.

Y

class exception {
public:

exception() throw();
exception(const bad_exception &ob) throw():;
virtual ~exception() throw():

exception &operator=(const exception &ob) throw();
virtual const char *what(() const throw();

class bad_exception: public exception ¢
public:

bad_exception() throw();
bad_exception(const bad_exception &cb) throw();
virtual ~bad_exception() throw();

bad_exception &operator=(const bad_exception &ob) throw();
virtual const char *what(() const throw();

The exception class is a base for all exceptions defined by the C++ standard library. The
bad_exception class is the type of exception thrown by the unexpected() function. In

each,

the member function what() returns a pointer to a null-terminated string that

describes the exception.
Several important classes are derived from exception. The first is bad_alloc, thrown
when the new operator fails. Next is bad_typeid. It is thrown when an illegal typeid

Chapter 38: Exception Handling and Miscellaneous Classes

expression is executed. Finally, bad_cast is thrown when an invalid dynamic cast is
attempted. These classes contain the same members as exception.
The types defined by <exception> are:

Type Meaning
terminate_handler void (*terminate_handler) ();
unexpected_handler void (*unexpected_handler) ();

The functions declared in <exception> are shown in Table 38-1.

<stdexcept>

The header <stdexcept> defines several standard exceptions that may be thrown by C++
library functions and/or its run-time system. There are two general types of exceptions
defined by <stdexcept>: logic errors and run-time errors. Logic errors occur because of
mistakes made by the programmer. Run-time errors occur because of mistakes in library
functions or the run-time system, and are beyond programmer control.

Function Description
terminate_handler Sets the function specified by fn as the
set_terminate(terminate_handler fr) terminate handler. A pointer to the old
throw(); terminate handler is returned.
unexpected_handler Sets the function specified by fn as the
set_unexpected(unexpected_handler fir) ~ unexpected handler. A pointer to the
throw(); old unexpected handler is returned.
void terminate(); Calls the terminate handler when a
fatal exception is unhandled. Calls
abort() by defauit.
bool uncaught_exception(); Returns true if an exception is
uncaught.
void unexpected(); Calls the unexpected exception handler
when a function throws a disallowed
exception. By default, terminate()
is called.
Table 38-1. The Functions Defined Within <exception>

928 C++: The Complete Reference

The standard exceptions defined by C++ caused by logic errors are derived from
the base class logic_error. These exceptions are shown here.

Exception Meaning

domain_error Domain error occurred.

invalid_argument [nvalid argument used in function call.

length_error An attempt was made to create an object that was too
large.

out_of_range An argument to a function was not in the required range.

The following run-time exceptions are derived from the base class runtime_error.

Exception Meaning

overflow_error Arithmetic overflow occurred.
range_error An internal range error occurred.
underflow_error An underflow occurred.

__I | autb_ptr

A very interesting class is auto_ptr, which is declared in the header <memory>. An
auto_ptr is a pointer that owns the object to which it points. Ownership of this object
can be transferred to another auto_ptr, but some auto_ptr always owns the object. The
key purpose of this scheme is to ensure that dynamically allocated objects are properly
destroyed in all circumstances (that is, that the object's destructor is always properly
executed). For example, when one auto_ptr object is assigned to another, only the target
of the assignment will own the object. When the pointers are destroyed, the object will
only be destroyed once, when the pointer holding ownership is destroyed. One benefit
of this approach is that dynamically allocated objects can be destroyed when an exception
is handled.

The template specification for auto_ptr is shown here:

template <class T> class auto_ptr

Here, T specifies the type of pointer stored by the auto_ptr.
Here are the constructors for auto_ptr:

explicit auto_ptr(T *ptr = 0) throw();

Chapter 38: Exception Handling and Miscellaneous Classes

auto_ptr(auto_ptr &ob) throw();
template <class T2> auto_ptr(auto_ptr<T2> &ob) throw();

The first constructor creates an auto_ptr to the object specified by ptr. The second
constructor creates a copy of the auto_ptr specified by ob and transfers ownership to
the new object. The third converts ob to type T (if possible) and transfers ownership.

The auto_ptr class defines the =, *, and —> operators. Here are two of its member
functions:

T *get() const throw();
T *release() const throw();

The get() function returns a pointer to the stored object. The release() function removes
ownership of the stored object from the invoking auto_ptr and returns a pointer to the
object. After a call to release(), the pointed-to object is not automatically destroyed when
the auto_ptr object goes out-of-scope.

Here is a short program that demonstrates the use of auto_ptr.

// Demonstrate an auto_ptr.
#include <iostream>
#include <memory>

using namespace std;

class X {

public:
X() { ccut << "constructing\n"; }
~X() { cout << "destructing\n"; }
void f() { cout << "Inside f£()\n"; }

-

int main()
{
auto_ptr<X> pl(new X), p2;

p2 = pl; // transter ownership
p2->£();

// can assign to a normal pointer
X *ptr = p2.get();

930 C++: The Complete Reference

ptr->£();

return 0;

The output produced by this program is shown here:

constructing
Inside f()
Inside f()
destructing

Notice that X's member function f() can be called either through an auto_ptr or through
the "normal” pointer returned by get().

___| The pair Class

The pair class is used to house pairs of objects, such as might be stored in an associative
container. It has this template specification:

template <class Ktype, class Vtype» struct pair {
typedef Ktype first_type;
typedef Vtype second_type;
Ktype first;
Vtype second;

// constructors

pair();
pair(const Ktype &k, const Vtype &V} ;
template<class A, class B> pair(const<hA, B> &ob);

The value in first typically contains a key, and the value in second typically contains
the value associated with that key.

The following operators are defined for pair: ==, !=, <, <=, >, and >=.

You can construct a pair using either one of pair's constructors or by using
make_pair(), which constructs a pair object based upon the types of the data used
as parameters. make_pair() is a generic function that has this prototype:

template <class Ktype, class Viype>
pair<Ktype, Vtype> make_pair(const Ktype &k, const Vtype &v);

Chapter 38: Exception Handling and Miscellaneous Classes

As you can see, it returns a pair object consisting of values of the types specified by
Ktype and Viype. The advantage of make_pair() is that the types of the objects being
stored are determined automatically by the compiler rather than being explicitly
specified by you.

The pair class and the make_pair() function require the header <utility>.

___| Localization

Standard C++ provides an extensive localization class library. These classes allow an
application to set or obtain information about the geopolitical environment in which it
is executing. Thus, it defines such things as the format of currency, time and date, and
collation order. It also provides for character classification. The localization library uses
the header <locale>. It operates through a series of classes that define facets (bits of
information associated with a locale). All facets are derived from the class facet, which
is a nested class inside the locale class.

Frankly, the localization library is extraordinarily large and complex. A description of
its features is beyond the scope of this book. While most programmers will not make direct
use of the localization library, if you are involved in the preparation of internationalized
programs, you will want to explore its features.

___| other Classes of Interest

Here are a few other classes defined by the Standard C++ library that may be of interest.

Class Description

type_info Used in conjunction with the typeid operator and
fully described in Chapter 22. Uses the header
<typeinfo>.

numeric_limts Encapsulates various numeric limits. Uses the

header <limits>.

raw_storage_iterator Encapsulates allocation of uninitialized memory.
Uses the header <memory>.

